不同大小整薯播种的产量变异 规律及其经济效益

一马铃薯整薯播种研究之二

王志强

(黑龙江省农业科学院马铃薯研究所)

摘 要

1980~1982年,通过田间试验,对马铃薯不同大小整薯播种的产量变异规律及 其经济效益进行了研究。结果表明,生产单位块薯产量所需种薯数量与种薯大小呈 极显著的线性关系;马铃薯产量与种薯大小呈渐近状曲线相关;净产量与种薯大小 呈抛物线性曲线相关。求得其极大值,3年平均为50·4±3·5克。马铃薯繁殖倍数与 种薯大小两者的关系具有双曲线的性质,它在第一象限随种薯大小的增大而递次降 低。不同大小种薯所产块茎的商品率3年平均,以111·2克为准时,种薯大小为10, 30,50,80和150克,各处理所产块茎商品率依次为88·1,77·6,69·7,62·8和 48·7%;以50克为准时,各处理所产块茎商品率依次为99·2,98·4,97·6,96·9和 94·0%。都在90%以上。

1 前 言

前报证实,马铃薯整薯播种在黑龙江省 北部黑土地区气象条件、生产水平和栽培条 件下有增产效果,特别是在春季干旱比较严 重情况下,更表现出特别突出的抗旱保苗作 用,获得大幅度增产。由于生产上常常片面 考虑经济用种,认为栽植整薯所需种薯数量 倍增,因此整薯播种在马铃薯大面积栽培上 尚很少使用(1)。这实质上是一个使用多大 整薯作播种材料最为合适的问题。对此,笔 者于1980、1981和1982连续3年进行了研 究,本文仅就试验结果对不同大小整薯播种 的产量变异规律及与之相关联的经济效益问 题加以探讨。

2 试验条件与方法

 以种肥形式公顷条施纯氮和纯五氧化二磷各30kg, 氮肥为硝酸铵, 磷肥为 过 磷 酸 钙, 1982年公顷条施种肥纯氮26kg,纯 五氧化二磷68kg, 所用肥料为磷酸二铵。种薯经严格挑选,并且具有该品种的典型性。

3 试验结果与讨论

3.1 种薯大小对马铃薯产量的影响

将3年试验产量结果列于表1。

J.	-
34	٦.
AL.	- 1

种薯大小对马铃薯产量的影响

种薯大小(g)	10	30	50	80	150
播种量Z(手kg/公顷)	0.51975	1.55850	2.59725	4.15575	2.79250
		1980年			
产量C(干kg/公顷)	21.65025	23.88000	27.50675	27.61950	28.04175
净产量C-Z(干kg/公顷)	21.13050	22.32150	24.90900	23.46375	20.24925
Z/C	0.02401	0.06526	0.09442	0.15046	0.27789
C/Z	41.7	15.3	10.6	6.6	3.6
		1981年			
产量C(干kg/公顷)	22.69500	27.63413	28.94125	29.23913	31.15988
净产量C-Z(干kg/公顷)	22.1752 5	26.07563	26.34450	25.08338	23.36/38
Z/C	0.0229015	0.0563976	0.0897405	0.142130	0.2500812
C/Z	43.7	17.7	11.1	7.0	4.0
	-	1982年			
产量C(干kg/公顷)	26.13525	31.01775	31.89075	31.04250	32.20350
净产量C-Z(干kg/公顷)	25.61550	29.45925	29.29350	27.48675	24.41100
Z/C	0.198869	0.0802454	0.0814400	0.1313300	0.2419800
C/Z	50.3	19.9	12.3	7.6	4.1

由于在同一栽植密度条件下播种量与种薯大小成比例,故本文在计算和说明问题时,将播种量与种薯大小视为同义语,两词通用。为了说明问题方便,将产量用C表示,播种量用Z表示,C-Z表示净产量。同时,Z/C表示单位块茎产量所需种薯数量,C/Z表示繁殖倍数。

由表 1 看出:

a. 生产单位块茎产量所需 稍 薯 数 量 Z/C与播种量 Z 呈直线相关。两者间的数量

关系可用回归方程 $\frac{Z}{C} = b + aZ \cdots (1)$

加以概括,见图1。

图 1 表明,每生产单位数量块茎所需种 薯数量与播种量呈极显著正相关,即种薯愈 大,每生产单位数量块茎所需种薯数量也愈 大。计算 3 年回归方程之回归系数的算术平 均值为0.031541±0.001954,即播种量每增 加 1 个单位,生产单位数量块茎所需种薯数 量即相应增加它的0.031541±0.001954倍,

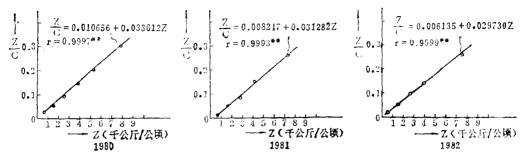


图 1 生产单位次量许等所需种薯数量与播种量的关系

说明随着种薯大小的增加种薯生产力的经济 效益递减。

b, 马铃薯产量C与种薯大小 Z 呈渐近 状曲线相关。由式(1) 得马铃薯产量 C与种 嘉大小的关系的一般表达式为 $C = \frac{Z}{b+aZ}$ … (2) , 3 年资料整理结果如图 2。

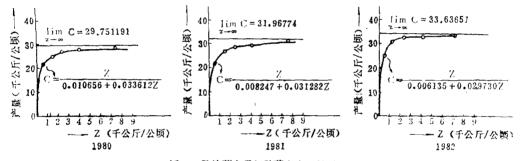


图 2 马铃薯产量与种薯大小的关系

由图 2 看出,马铃薯产量随着种薯大小的增加而增加,但这种增加并不是成比例的增加,当用小整薯作种时,产量随种薯增大而显著增加;但当种薯大小达到一定程度时,产量的增加就缓慢下来,而且随着种薯大小的继续再增加,产量的增加就 越来越

小,产量向-1- 渐近。

3.2 种薯大小对马铃薯净产量的影响

用种量大是马铃薯区别其它作物的显著 特点之一,因此,种薯大小的变化对净产量 来说就成为一个不可忽视的 因 素。前 已 提 及,在一定栽植密度条件下,种薯大小与播 种量成正比,而与此相反,马铃薯产量与种 薯大小的关系却是一条渐近状曲线的关系。 因此,随着种薯大小的不断增加,总会有一点净产量为最高,超过此点再增加行薯大小产量就降低,这个净产量最高之点即量近种 薯大小为广大生产者所关注。

从式 (2) 的产量C减去播种量Z 以观察 净产量 C-Z 依种薯大小变化而变化的规律 性,可用下式加以概括。

$$C-Z = (\alpha Z - a Z^2) \circ \left(\frac{1}{b+aZ}\right) \cdots (3)$$

3 年净产量(C-Z) 依孙薯大小变化而变化的回归方程见图3。

从图 3 得知, 马铃薯净产量 C-Z 与种薯大小 Z 呈热物状曲线和关,即当种兽很小时,净产量随种薯大小的增加而迅速增加,之后就缓慢下来, C-Z 达最大值后等高大小再继续增加,净产量就开始下降。

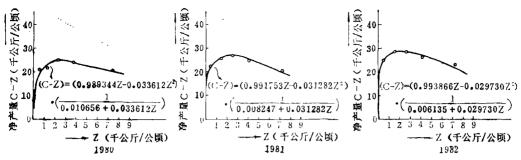


图 3 马铃薯净产量与种薯大小的关系

进而计算净产量最高时之种薯大小即最适种薯大小,将图 3 中各回归方程微分,求出 $\frac{d(C-Z)}{dZ}=0$ 时之 Z值,结果列于表2。

由表 2 看出,马铃薯整薯播种的最适种 薯大小波动在46.7~53.6克之间,求得其 3 年算术平均值及标准差为 50.4±3.5克。说明,在黑龙江省北部黑土地区自然条件和栽培条件下,应用整薯播种栽培马铃薯时,种

表 2 最适种薯大小之计算值

41.22.20.		
试验年份	$\frac{d(C-Z)}{dZ} = 0 $	最适种薯大小
=	(千公斤/公顷)	(g/个薯)
1980	2.7843	53.6
1931	2.6394	50.8
1982	2.4278	46.7
平均	2.6172	50.4

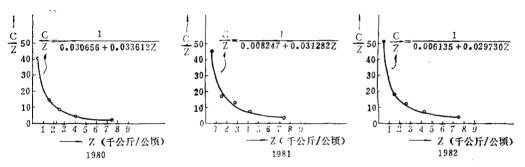


图 4 种薯大小与马铃薯繁殖倍数的关系

薯大小以50·4克左右为宜,亦即这时种薯使用的经济效益为最高。但是在生产实际上,正如在图 3 所看到的,净产量依种薯大小变化的曲线的峰是很平级的,而且在应用这些曲线时一般以超前些为好,故生产上采用整薯播种时实际上应以30~50克左右 较为合适。

3.3 种薯大小对马铃薯 繁 殖 倍 数 的 影响

用尽量少的种薯生产出尽量多的块茎, 即提高种薯的繁殖倍数,是关系到种薯使用 的经济效益的又一问题。种薯大小与马铃薯 繁殖倍数密切相关,正如前面讨论的,每生 产单位数量的块茎所需种薯数量与种薯大小 呈极显著正相关,这意味着随种薯大小的增 加种薯使用的经济效益降低。为了更明确地

看出这种关系,可以式 $\frac{C}{Z} = \frac{1}{b+aZ}$ ···(4) 概括表达,见图4。

图 4 表明,马铃薯繁殖倍数依种薯大小变化而变化的规律是: 当种薯很小时繁殖倍数很大,随着种薯大小的增加繁殖倍数急速下降,降低到一定程度种薯大小再增加,繁

殖倍数的降低又趋减缓。从实测值看(表1), 年平均种薯10,30,50,80和150克、各处 理的繁殖倍数依次为45.2,17.6,11.3, 7.1和3.9。

将图3、图4加以比较,可以发现净产量最高点与繁殖倍数最大点二者并不重合,种薯10克的繁殖倍数虽大(3年平均为45.2),但净产量不高。故从既要高产和又能经济用种综合效益上看,则以种薯大小为30~50克为佳,前者繁殖倍数为17.6,后者为11.3,实际上在本地区11.3~17.6的繁殖倍数早已为广大生产者所接受,况且净产量也最高。种薯大小超过50克时,不但净产量降低,而且繁殖倍数也变小,故不可取。

3.4 种薯大小对马铃薯块茎产量 分 级组成的影响

将 1980, 1981 和 1982 年试验结果列于表3。

表 3 指出,种薯大小对马铃薯块茎产量 分级组成的影响是明显的。从试验结果平均 值看,块茎中的大薯部分随种薯大小的增加 递次减少,中薯部分在种薯大小为80克以下 时随种薯大小的增大无明显变化,超过80克 有下降趋势;而小薯和屑薯二者则随种薯大 小的增加而增加。这种随种薯大小的增加所 引起的块茎产量中的大、中薯比率特别是大 薯比率的降低和小屑薯比率的增加,这一点 与国外报道一致,原因是大种薯比小种薯产 生较大的茎密度所致⁽²⁾。

表 3 种薯大小对块茎产量分级组成的影响 (产量: 千公斤/公顷)

种薯大小	(g)	10	_	30	_	50		80		150
项	产量	%	产量	%	产量	%	产量	%	产量	%
					1 9 8	0				
大	8.68	40.0	67	32.1	4.72	17.2	3.68	13.4	1.36	4.3
ιμ̈́	9.46	43.7	7.23	30.3	8 86	17192.2	9.01	32.6	4.32	15.4
办	3.41	15.8	8.60	36.0	13.26	48.2	13.50	43.8	19.90	71.0
	0.10	0.5	0.38	1.6	0.67	2.4	1.43	5.2	2.46	8.8
ìt	21.65	100.0	23.88	100.0	27.51	100.0	27.62	100.0	28.04	100.0
					198	47			-	
 ナ	12.12	53.4	11.38	41.3	10.94	37.8	6.22	21.3	5.5l	17.1
$L_1^i \mathcal{A}$	7,17	31.6	10.65	38.5	9.66	33.4	10.44	35.7	7.35	23.6
7]、	3.14	13.8	5.20	18.8	7.71	26.6	11.86	40.6	16.27	52.2
屑	0.27	1.2	0.40	1.4	0.63	2.2	0.72	2.4	2.03	6.5
ìŀ	22.76	100.0	27.63	100.0	28.94	100.0	29.24	100.0	31.16	100.0
		-			1982	2				
	19.75	75.6	19.60	63.2	20.52	64.3	15.71	49.7	16.23	50.4
1 ‡1	4.90	18.7	1.50	24.2	18.6	21.4	10.54	33.3	9.72	39.2
小	1.29	4.9	3.36	10.8	3.73	11.7	4.79	15.l	5.22	16.2
属	0.20	0.8	u.5 6	1.8	0.83	2.6	0.60	1.9	1.03	3.2
ì†	26.11	100.0	31.02	100.0	98.18	100.0	31.64	100.0	32.20	103.0

					3 年平均					
大	13.52	57.5	12.38	46.8	10.06	41.0	8.54	28.9	7.70	25.3
中	7.18	30.6	8.43	30.8	8.44	28.7	10.00	33.9	7.13	23.4
小	2.61	11.I	5.72	20.8	8.24	27.9	10.05	34.1	13.80	45.3
屑	0.19	0.8	(. 45	1.6	0.71	2.4	0.91	3.1	1.84	6.0
11	23.50	100.9	27.51	100.7	29.45	100.0	23.50	100.0	30.47	100.0

注:表中之大中小屑薯,大薯: 150克以上,中薯: 75~150克,小薯: 25~75克,屑薯: 25克以下

从经济角度出发,块茎产量分级组成问 题实际上是商品率问题。块茎商品率如以中 薯(75~150克)的中值112.5克为准时,则种 薯大小10, 30, 50, 80和 150 克各处理所产 块茎商品率依次为88.1,77.6,69.7,62.8 和48.7%;如果以我国北方试验研究上通用 的以小薯(25~75克)的中值50克为准时,则

各处理所产块茎商品率依次为99.2、98.4、 97.6、96.9和94.0%。

参考文献

- 〔1〕 落先明, 本竞雄等, 作物栽培学一马铃薯, 1958,
- (2) Advisory committee on potatoes. Canada. Atlantic Canada Potato Guide, 3~4

STUDIES ON WHOLE POTATO SEEDS

II. THE VARIATION PATIERNS OF THE PROGENY TUBER YIELD OF DIFFERENT SIZE SEED TUBERS

Wang Zhiqiang

(Ke Shan Potato Research Institute, Heilongjiang Academy of Agricultural Sciences)

ABSTRACT

Field experiments were carried out in researching the variation patterns o the progeny tuber yield of different size seed tubers during 1980~1982. The results obstained were summarized as follows. The relationship between tuber yield (C, ton/ha) and seed tuber size or the amount of seed tuber/ha (Z, ton/ha) was C=Z/b+aZ, in which a and b are both constants. The relationship between net yield (C-Z, ton/ha) and seed tuber size (Z, ton/ha) can be expressed as following equation $C-Z=(\alpha Z-aZ^2)\cdot (1/b+aZ)$ with the maximum of 50.4±3.5g in three year average, in which 2, a and b are constants. The rate of marketable tubers decreased with the increase of seed tuber size.