饱和 D 最优设计方法在农业 试验中的应用

张永成

(青海省农科院作物所 西宁 810016)

在农业试验中,饱和 D 最优设计是一种较好的设计方案。其特点是预测值精度较高,对选择最佳生产措施有较强的实用性。饱和 D 最优设计是回归方程中参数数目与试验处理组合数目相等的设计,回归自由度与总自由度相等达到饱和。采用这种设计试验处理数少,获得的信息量大,误差小,精确度高。

1 试验设计

1.1 选择试验因素,确定上下限水平

本例为 ABT^5 号处理马铃薯的 2 因素试验,分别用 Z_1 和 Z_2 表示(表 1)。

表 1 因素水平

V4 7A 17 ±	水	平
试验因素	上限	下 限
Z ₁ 浓度(ppm)	50	6
Z2 浸种时间(h)	2	0.5

1.2 求试验因素的零水平和变化区间

根据饱和设计的要求规定:

某因素的零水平(Z0j)=

该因素的(上限水平+下限水平)

 故①两因素的零水平分别为:

浓 度:
$$\mathbf{Z}_{01} = \frac{50+6}{2} = 28$$

浸种时间: $\mathbf{Z}_{02} = \frac{2+0.5}{2} = 1.25$

②两因素的变化区间分别为:

浓
$$\underline{g}_{:}\Delta_{1} = \frac{50-28}{1} = 22$$
 浸种时间 $: \Delta_{2} = \frac{2-1.25}{1} = 0.75$

1.3 对各因素的水平讲行编码

把各因素有量纲的自然变量 Z_j 变成无量纲的规范变量 x_j 。将浓度编码值用 x_1 表示,浸种时间编码值用 x_2 表示,进行线性变换,其公式为:

编码值
$$x_j = \frac{Z_j - Z_0j}{\Delta_j}$$

故: $Z_j = x_j \cdot \Delta_j + Z_{0j}$

根据以上已知数据,对浓度和浸种时间分别进行编码,求出各自的编码值 x_i 与自然变量 Z_i 的对应值,见表 2 和表 3。

表 2 浓度编码值对应的自然变量

X 1	Z1 (浓度)
1	$Z_{11} = x_1 \cdot \Delta_1 + Z_{01} = 1 \times 22 + 28 = 50$
u	$Z_{u1} = 0.3944 \times 22 + 28 \approx 37.5$
λ	$\mathbf{Z}_{\lambda 1} = -0.1315 \times 22 + 28 = 25$
-1	$\mathbf{z}_{-11} = -1 \times 22 + 28 = 6$

表 3 浸种时间编码值对应的自然变量

X 2	Z ₂ (浸种时间)
1	$\mathbf{Z}_{12} = \mathbf{x}_2 \cdot \Delta_2 + \mathbf{Z}_{02} = 1 \times 0.75 + 1.25 = 2$
u	$\mathbf{Z}_{\mathbf{u}^2} = 0.3944 \times 0.75 + 1.25 = 1.5$
λ	$\mathbf{z}_{\lambda 2} = -0.1315 \times 0.75 + 1.25 \approx 1$
-1	$\mathbf{Z}_{-12} = -1 \times 0.75 + 1.25 = 0.5$
注.11	$=0.3944$ $\lambda = -0.1315$

1.4 试验方案

根据以上计算列出试验方案表,见表4。

表 4 二因素二次饱和 D 最优设计实施方案

试验号	浓度(p	浓度(ppm)		闰(h)
1	_	6	-1	0.5
2	1	50	-1	0.5
3	-1	6	1	2
4	-0.1315	25	-0.1315	1
5	1	50	0.3944	1.5
6	0.3944	37.5	1	2

2 试验结果及分析

2.1 数学模型的建立

二次饱和 D 最优设计的回归模型为:

$$E(y) = B_0 + \sum_{j=1}^{p} B_j x_j + \sum_{i < j}^{p} B_{ij} x_i x_j$$
(2-1)

本试验选择的是 2 因素 4 水平设计, 其 结构矩阵(x) 如表 5。将各处理的株高填入 试验结果栏中的y 列。

表中的数字是编码值,括号内的数字是 对应的自然变量。试验时,仅以括号内的数 字实施(即实施方案)。y 值为实测值,y 为理 论值。

计算相关矩阵 C

①解矩阵

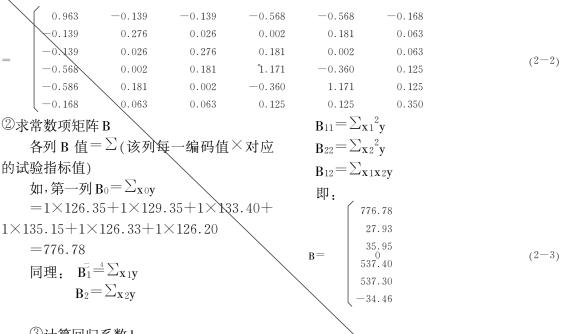
 $C = [x'x]^{-1}$

式中: C 表示相关矩阵, x 表示结构矩阵, x 为 x 的转置矩阵。

表 5 最优设计矩阵及结果

试 验		结 构 矩 阵				试验结果		
号	X ()	X 1	X 2	\mathbf{x}_1^2	\mathbf{x}_2^2	X 1X 2	у	ŷ
1	1	-1(6)	-1(0.5)	1	1	1	126.35	126.87
2	1	1(50)	-1(0.5)	1	1	-1	129.35	128.93
3	1	-1(6)	1(2)	1	1	-1	133.40	132.97
4	1	λ(25)	$\lambda(1)$	0.0173	0.0173	0.0173	135.15	134.88
5	1	1(50)	u(1.5)	1	0.1556	0.3944	126.33	125.42
6	1	u(37.5)	1(2)	0.1556	1	0.3944	126.20	125.30
b	776.78	27.93	35.95	537.4	537.3	-34.46	R=0.9	9159**

$$\mathbf{E}$$
: $\mathbf{A} = -0.1315$ $\mathbf{u} = 0.3944$ -1 $\mathbf{C} = \begin{bmatrix} \mathbf{x} & \mathbf{x} \end{bmatrix}^{-1}$ $\mathbf{C} = \begin{bmatrix} \mathbf{x} & \mathbf$



③计算回归系数 b

$$P = C \cdot B$$

④建立数学模型

$$\hat{\mathbf{y}} = 134.52 - 3.17_{\mathbf{x}1} - 1.15_{\mathbf{x}2} - 3.09_{\mathbf{x}_1^2} - 4.68_{\mathbf{x}_2^2} - 4.2_{\mathbf{x}_1\mathbf{x}_2}$$
 (2-5)

⑤计算理论值 ŷ

把结构矩阵中的编码值分别代入回归方 程,即可求得每处理的理论估计值,结果如 下:

$$\hat{\mathbf{y}}_1 = 134.52 - 1 \times (-3.17) - 1 \times (-1.15) + 1 \times (-3.09) + 1 \times (-4.68) + 1 \times (-4.2) = 126.87$$

余类推:
$$\hat{\mathbf{y}}_2 = 128.93$$
 $\hat{\mathbf{y}}_3 = 132.97$ $\hat{\mathbf{y}}_4 = 134.88$ $\hat{\mathbf{y}}_5 = 125.42$ $\hat{\mathbf{y}}_6 = 125.30$

将上述 v 值填入表 5 中的最后一列。

饱和最优设计的总自由度与同归自由度 相等,没有剩余自由度,故不能估计误差。对 于试验结果的精度只能用测定值和估计值之 间的相关系数来验证。

R=0.99159**达到极显著水准,说明 v与ŷ非常吻合。亦证明饱和D一最优设计 是回归设计中比较好的一种设计方法。

2.3 模型分析

2.3.1 因子主次分析

偏回归系数绝对值的大小反映了因素的 主次,符号的正负反映了因素水平的取值方 向。由(2-5)式看出, $|3.17| > |1.15| 则 b_1$ ≥b2,表明在一定的范围内浓度使用量的大 小是影响植株高度的主要因素。

2.2. (C) 模型检验 China Academic Journal Electronic Publishing House 析 rights reserved. http://www

$$\hat{\mathbf{y}} = 134.52 - 3.17_{\mathbf{x}1} - 3.09_{\mathbf{x}_1^2}$$
 (2-6)

分别用-1、-0.1315、0.3944、1四个偏 码值代入(2-6)式中的 x_1 ,即可求得不同用 药量对株高的影响。

同理,令
$$(2-5)$$
式中的 $x_1=0$ 则
 $\hat{y}=134.52-1.15x_2-4.68x_2^2$ (2-7)

用上述 4 个编码值代入(2-6)式中的 x_2 ,即求出不同浸种时间对株高的影响。见 表 6。

表 6 两因素取不同编码值 时对株高的影响

因素		编码值	直(x _j)		极差
四系	-1	-0.1315	0.3944	1	(K)
『浓度	134.60	134.88	132.79	128.26	6.62
浸种时间	130.99	134.59	133.34	128.69	5.9

2.3.3 交互效应分析

将 4 个编码值分别代入(2-5) 式的 x_1 和 x_2 中求出 x_1x_2 的交互效应值, 见表 7。由 表7可知,当浓度编码值取一1水平时,浸种 时间的编码值取 0.3944 时,交互效应最高, 理论株高达到 135.07cm。

表 7 浓度与浸种时间的交互效应

		X	1			
X 2	-1	-0.1315	0.3944	1		
-1	126.87	130.80	130.92	128.93		
-0.1315	134.12	134.88	133.08	128.88		
0.3944	135.07	133.92	130.95	125.42		
1	132.97	129.61	125.30	118.23		

2.3.4 边际效应分析

分析边际效应就是分析株高随各因素水 平值变化而增减的变化率。

用(2-5)式中的 \hat{v} 分别对 x_1 和 x_2 求偏 导数,求出边际效应方程:

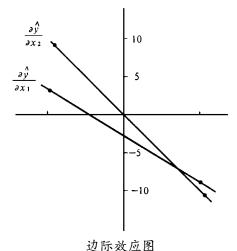
$$\frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{X}_1} = -3.17 - 6.18_{\mathbf{X}_1}$$
 (2-8)

$$\frac{\partial_{\mathbf{y}}}{\partial \mathbf{X}_{2}} = -1.15 - 9.36_{\mathbf{X}_{1}}$$
 (2-9)

对上述边际效应方程分别用-1和1(编 码值的两个极值)代入,每式求出两个点,在 直角座标系中将两个点连成一条直线, 见表 8 和图。

表 8 边际效应值

П#	编	i码
因素	-1	1
∂_y ∂_{x_1}	3.01	-9.35
∂y ∂ _{x 2}	8.21	-10.51



由图可以看出, $\frac{\partial \hat{y}}{\partial \mathbf{x}}$ 直线的斜率大于 $\frac{\partial \hat{y}}{\partial \mathbf{x}}$ 直线的斜率,说明侵种时间对植株高度影响 速度快。

2.4 最优农艺措施的选择

2.4.1 模拟试验

 Π 4 个编码值, 每两两组合, 共组成 4^2 =16个全因子试验,分别代入(2-5)式中的 x1和x2中,即可模拟出16个试验结果(表 9),其中包括已经实施的6个试验在内。如 将第一个组合(-1,-1)分别代入 x_1 和 x_2 , 其结果如下:

 $\frac{\partial \hat{\mathbf{y}}}{\partial \dot{\mathbf{x}}} = -3.17 - 6.18_{\mathbf{x}1}$ (2-8) 共격未知 Γ :
01994-2023 China Academic Journal Electronic Publishing House. All rights reserved. http://www

$$\hat{\mathbf{y}} = 134.52 - 3.17 \times (-1) - 1.15 \times (-1) - 3.09 \times (-1)^2 - 4.68 \times (-1)^2 - 4.2 \times (-1)$$

$$\times (-1)$$
=126.87
余类推。

2.4.2 定指标约束条件,选择最优组合

根据生产实践定出优选指标的约束条件,本列凡株高在 130cm 以上的组合,均为最优农艺措施组合,从 16 个组合中选出满足约束条件的 9 个组合(见表 9 中画"√"者)。若是多指标试验时,所选的组合必须同时满足各个指标的约束条件。

2.4.3 对入选的 9 个组合进行综合分析,确定最优农艺措施组合

列出最优组合的频数分布表(表 10)进行分析。

对入选的⁹个最优组合进行平均数、标准差、标准误、^{95%}的置信限以及农艺措施的计算,最后得出在马铃薯增产方面采用不同浓度和不同浸种时间应用 ABT 生根粉,对株

高的影响程度表明:浓度在 $12.78 \sim 32.41_{\mathrm{ppm}}$, 浸种时间在 $0.86 \sim 1.60_{\mathrm{h}}$ 范围

表 9 模拟试验结果

4台口	组织	扁码	株高	优选
编号	X 1	X 2	(cm)	组合
1	-1	-1	126.87	
2	-1	-0.1315	134.12	\checkmark
3	-1	0.3944	135.07	\checkmark
4	-1	1	132.97	\checkmark
5	-0.1315	-1	130.80	\checkmark
6	-0.1315	-0.1315	134.88	\checkmark
7	-0.1315	0.3944	133.92	\checkmark
8	-0.1315	1	129.61	
9	0.3944	-1	130.92	\checkmark
10	0.3944	-0.1315	133.08	\checkmark
11	0.3944	0.3944	130.95	\checkmark
12	0.3944	1	125.30	
13	1	-1	128.93	
14	1	-0.1315	128.88	
15	1	0.3944	125.42	
16	1	1	118.23	

内效果为佳。

表 10 最优组合频数分布

编码值及	浓	度	浸利	时间
统计项目	次数	频率	次数	频率
-1	3	0.333	2	0.222
-0.1315	3	0.333	3	0.333
0.3944	3	0.333	3	0.333
1			1	0.111
合 计	9	1	9	1
平均值 $\bar{\mathbf{x}}_{\mathrm{j}}$	-0.	. 2457	-0.0235	
标准差 S_j	0.5	5916	0.6627	
标准误 Sx_j	0.3	0.1972		2209
95%置信限 L	-0.6918 \sim 0.2004		$-0.5232 \sim 0.4762$	
农艺措施	12.78~32.41 ppm		0.86~	1.60 h

注:自由度 df=9

 $t_{0.05} = 2.262$

优良农艺措施组合选择的详细求算过程:

①计算平均数 x̄_i

浓度
$$\bar{\mathbf{x}}_1 = [(-1) \times 3 + (-0.1315)]$$

$$\times 3+0.3944 \times 3+1 \times 0$$

浸种时间
$$\bar{\mathbf{x}}_2 = [(-1) \times 2 + (-0.1315)]$$

$$\times 3 + 0.3944 \times 3 + 1 \times 1$$

②计算标准差

可用 fx = 3600p 直接计算标准差:

浓度 S=0.5916 浸种时间 S=0.6627

③计算频率

频率=各编码值的次数 总数 N

浓度的频率:

$$-1$$
 频率= $\frac{3}{9}$ =-0.333

$$-(0.1315)$$
頻率= $\frac{3}{9}$ =0.333

$$0.3944 \, \text{m/s} = \frac{3}{9} = 0.333$$

$$1$$
的频率= $\frac{0}{9}$ =0

浸种时间频率计算同上。

④计算标准误 Sxi

标准误
$$=$$
 $\frac{5}{\sqrt{n}}$ $\frac{5}{\sqrt{9}}$ $\frac{5}{3}$

浓度
$$\mathbf{S}_{\mathbf{x}_1}^{-} = \frac{0.5916}{3} = 0.1972$$

浸种时间 $S_{\mathbf{x}_2}^- = \frac{0.6627}{3} = 0.2209$

⑤计算95%的置信限

95%的置信限=样本平均数 $\pm_{t0.05}$ ×标准误。当自由度 df=9 时, $t_{0.05}$ =2.262

浓度 95% 置信限

$$=-0.2457\pm2.262\times0.1927$$

= $(-0.6918)-0.2004$

浸种时间 95%置信限

$$=-0.0235\pm2.262\times0.2209$$

= $(-0.5232)-0.4762$

⑥农艺措施求算

将95%的置信限编码值换算成自然变

量:

因为
$$x_i = \frac{Z_i - Z_{0i}}{\Delta_i}$$
;

所以 $Z_i = Z_{0i} + x_i \cdot \Delta_i$

即:自然变量=零水平+编码值×变化

区间

浓度:
$$Z_01=28$$
 $\Delta_1=22$

$$x_{17} = 28 + (-0.6918) \times 22 =$$

$$X_{1\pm} = 28 + 0.2004 \times 22 =$$

$$\bar{\mathbf{x}}_1 = \frac{1}{2} (12.78 + 32.41) =$$

浸种时间: $Z_{02}=1.25$ $\Delta_2=0.75$

$$x_{27} = 1.25 + (-0.5232) \times 0.75 =$$

0.8576 (h)

$$x_{2\perp} = 1.25 + 0.4762 \times 0.75 =$$

1.6015 (h)

$$\bar{x}_2 = \frac{1}{2} (0.8576 + 1.6015) = 1.23 (h)$$

参考文献

- 1 张中发等. 二次回归正交组合设计. 青海农林科技,
- 2 张中发等.农业现代试验设计.青海农林科技,1989,3
- 3 张永成·ABT 生根粉在马铃薯生产中的应用·马铃薯杂志,1991,5(4),219~222