生物有机肥对马铃薯增产效果试验

秦光齐1) 石永安2) 江 舒3) 张 生1)

(¹⁾黑龙江瑞威现代农业发展有限公司 哈尔滨 ¹⁵⁰⁰⁰⁸; ²⁾哈尔滨瑞威实业发展有限公司; ³⁾黑龙江省科学技术情报研究所)

中图分类号: S144.9, S532

文献标识码: B

文章编号: 1001-0092 (2000) 01-0014-03

1 前 言

在农业生产过程中,随着种植时间的推移,土壤肥力逐年下降,常用施肥来补充,由于农家有机肥的贫乏,化肥施用量逐年增加。目前,我国化肥供应缺口非常大,单纯依赖化肥所带来的破坏土壤结构、作物品质下降、污染环境等弊端已为世人所共识。因此,发展应用生物有机肥已成为世界潮流。

黑龙江瑞威现代农业发展有限公司生产的"绿工牌"马铃薯专用生物有机肥(以下简称生物有机肥),是黑龙江省科学院科技人员经过10几年的研究,采用生物工程技术,以草炭为载体,吸附高效N菌、溶P菌、解K菌和放线菌,并添加马铃薯所需要的微量元素而制成的生物有机肥,无污染、肥田增产效果明显,是新一代活性肥料。1999年在黑龙江省北部马铃薯主产区的克山、北安进行了生产示范,又获得了明显的增产效果,为推广提供了依据。

收稿日期: 1999-10-10

2 材料与方法

2.1 肥料

以生物有机肥为处理,以化肥作对照,用量见 ${\bf a}_{1}$

表 1 施用量 $(kg/667m^2)$

· -	10/14 1	g	/	
试验地点	处 :	理	对具	图
(代号)	肥料	数量	肥料	数量
克山县克山镇五村	生物有机肌	g 50	二胺	40
A	尿素	3.8		
克山县克山镇五村	生物有机肥	g 50	二胺	40
В	尿素	3.8		
克山县古北乡平安村	生物有机肥	g 50	二胺	20
С	尿素	3.8	土杂粪	2000
克山县第二良种场	生物有机肌	g 50	二胺	5
D	尿素	3.8	尿素	1.5
			高效复合肥	50
			硫酸钾	10
北安市二井镇建兴村	生物有机肥	<u>1</u> 50	硫酸钾复合肥	35.7
E	尿素	3.8		

3.3 不同处理对原原种生产的影响

添加生根粉培养的试管苗根系发达,植株健壮,且由于生长速度快,叶片展开面积相对较小,

植株蒸腾作用小,易炼苗,缓苗快,成活率高,微型薯产量显著提高,单位面积增产 10%左右(表3)。

表 3 不同处理对原原种生产的影响 (单位: 个, g, kg/m²)

AL TIII	单	株	単	株	単	株	単	株	单	株	平均	单株	鲜薯	LCD
处 理	结薯数	鲜薯重	结薯数	鲜薯重	结薯数	鲜薯重	结薯数	鲜薯重	<u>单</u> 结薯数	鲜薯重	结薯数	鲜薯重	产量	LSD _{0.05}
生根粉	1.49								1.53					结薯数 0.01
BA	1.43	1.30	1.39	1.37	1.41	1.31	1.37	1.39	1.36	1.38	1.40	1.35	0.95	鲜薯重 0.02

4 讨论

试验结果表明,添加生根粉诱导马铃薯脱毒试管苗生根早,数量多、根系发达,茎粗苗壮,生长

势强,移栽成活率高,微型薯产量明显提高,缩短了培养时间,降低了生产成本。生根粉价格低,购买方便,完全可以替代BA诱导马铃薯脱毒试管苗生根,尤其适合为工厂化生产脱毒微型薯。

2.2 马铃薯品种

紫花(A、B),克新²号(C)、东农³⁰³(D、E)。(A、B、C、D、E 均是种植农户的代号——编者注)。

2.3 面积

生物有机肥面积 $6 \times 667 \text{ m}^2$ (其中: D $2 \times 667 \text{ m}^2$,其余 A,B,C,E 各 667 m^2 ,对照各 667 m^2)。

2.4 方法

采用对比法,选择土质肥沃、疏松、排水良好的代表性地块;在5 月上旬播种;行株距70 cm \times 25 cm (只有 D 66 cm \times 15 cm);在播种时,将生物有机肥与尿素混拌均匀,作种肥,顺垄沟均匀的施入,田间管理同大田。

2.5 调查记载

在马铃薯生育期间,调查了出苗期、幼苗长势、开花期、株高、繁茂性和茎叶枯黄期。

2.6 测产

在茎叶枯黄期收获前,选代表性点,采用对角线法 (四点制),每点 2 m^2 ,处理与对照平行同时进行测产。

2.7 测淀粉含量

按构成产量的比例,取大中小薯 5 kg,用比重 法测淀粉含量。

2.8 数据处理

对所有数据进行统计汇总。

3 结果与分析

3.1 生物有机肥对出苗开花的影响

由表 2 可见,施用生物有机肥,可使出苗期、 开花期略有提前。早熟品种比对照早出苗和早开花 $1\sim 3d$; 中晚熟品种比对照早出苗 1d,早开花 $1\sim 3d$ 。因晚疫病危害,茎叶枯黄期无差别。

表2 主要物候(日/月)

	- VC	エスが人	(7, 71)	
代号	肥料	出苗期	开花期	茎叶枯黄期
A	处理 对照	15/6 16/6	16/7 18/7	21/9 21/9
В	处理 对照	$\frac{9/6}{10/6}$	8/7 9/7	20/9 20/9
C	处理 对照	$\frac{20}{6}$ $\frac{21}{6}$	$\frac{3/7}{6/7}$	19/9 19/9
D	处理 对照	$\frac{18/6}{19/6}$	$\frac{15/7}{16/7}$	$\frac{1/9}{1/9}$
E	处理 对照	$\frac{14/6}{17/6}$	$\frac{3}{7}$ $\frac{6}{7}$	6/9 6/9

3.2 生物有机肥对生育状况的影响

由表 3 看出,在水分充足的条件下,生物有机肥具有促进马铃薯生长发育的作用。一是幼苗长势优于对照;二是株高比对照高(早熟品种高出 1.8 cm,中晚熟品种高出 5.2 cm);三是植株长势优于对照,即生育整齐,繁茂,叶色浓绿。

表3 生育状况

代号	肥料	幼苗长势	株高 (cm)	繁 茂 性
A	处理	优	48.6	生育整齐,繁茂,叶色浓绿
	对照	中	44.2	生育不整齐,叶色淡绿
В	处理	优	39.6	生育整齐, 叶色淡绿
	对照	中	34.5	生育不整齐, 叶淡绿
С	处理	优	56.4	生育整齐,繁茂,叶色淡绿
	对照	中	50.3	生育不整齐,叶色淡绿
D	处理	干旱	42.1	降雨, 开花后生育整齐, 繁茂, 叶淡绿
	对照	无差别	40.2	降雨, 生育不太整齐, 叶淡绿
E	处理	干旱	41.4	降雨, 开花后生育整齐, 繁茂, 叶浓绿
	对照	无差别	39.7	降雨, 生育不太整齐, 叶淡绿

3.3 生物有机肥对产量构成要素的影响

由表 4 可知,生物有机肥不仅促进了地上部的植株生长发育,同时对地下部的块茎生长也有促进作用,提高了产量构成因素的大中薯重量。早熟品种(平均),大薯重比对照提高 4%,中薯重比对照提高 52.94%;中晚熟品种(平均),大薯重比对照提高 24.93%,中薯重比对照提高 11.02%。

表 4 大、中、小薯重 (kg/m^2)

代号		处理					对照				
	大薯重	中薯重	小薯重	合计		大薯重	中薯重	小薯重	合计		
A	1.50	0.50	0.20	2.20		1.40	0.30	0.10	1.80		
В	1.06	0.41	0.19	1.66		0.94	0.36	0.19	1.49		
С	1.85	0.50	0.27	2.62		1.19	0.61	0.34	2.14		
D	1.10	0.75	0.50	2.35		1.00	0.50	0.52	2.02		
E	2.05	0.55	0.60	3.20		2.03	0.35	0.35	2.70		

3.4 生物有机肥对淀粉含量的影响

由表5看出,处理与对照的淀粉含量相近,这

表5 淀粉含量 (%)

代 号	处理	对照
A	14.00	13.90
В	13.91	13.80
С	14.72	14.30
D	11.70	11.60
E	11.96	11.85

3.5 生物有机肥对马铃薯的增产效果

由于生物有机肥促进了马铃薯的生长发育(见表2、3、4),为产量的形成奠定了基础。由表6看出,生物有机肥(与对照比)对马铃薯有明显的增产效果,早熟品种平均增产17.4%,中晚熟品种平均增产21.07%。

表 6 产量结果 $(kq/667m^2)$

代 号	处理	对照	比对照增产 (%)
A	1466.72	1200.06	22.22
В	1106.72	933.38	18.57
С	1746.75	1426.74	22.43
D	1566.75	1346.73	16.34
E	2133.44	1800.09	18.52

3.6 生物有机肥对马铃薯的经济效益

由表 7 可知,因为施用生物有机肥提高了马铃薯产量,所以经济效益也十分明显。早熟品种,处理比对照平均增值 104.02 元/667 m^2 ,增值 24.53%; 中晚熟品种,处理比对照平均增值 105.31 元/667 m^2 ,增值 42.54%。

表7 经济效益分析

<u>Д</u>	ř	左量	产值	施肥成本	扣掉施肥成本产值	增	值	马铃薯
代 号	$(kg/667m^2)$ (元/667 m^2)		$(元/667m^2)$) (元/667 \mathbf{m}^2) (元/667 \mathbf{m}^2)		$(元/667m^2)$	(%)	售价 (元/kg)
A	处理	1466.74	440.02	70.70	369.32	113.30	44.25	0.30
11	对照	1200.06	360.02	104.00	256.02			
D	处理	1106.72	332.02	70.70	261.32	85.31	48.47	0.30
В	对照	933.38	280.01	104.00	176.01			
C	处理	1746.75	524.03	70.70	453.33	117.31	34.91	0.30
С	对照	1426.74	428.02	92.00	336.02			
D	处理	1566.75	564.03	70.70	493.33	103.76	26.63	0.36
D	对照	1346.73	484.82	95.25	389.57			
Г	处理	2133.44	640.03	70.70	569.33	104.27	22.42	0.30
Е	对照	1800.09	540.03	74.97	465.06			0.30

注:生物有机肥售价 1.30 元/kg,尿素售价 1.50 元/kg,二胺售价 2.60 元/kg,高效复合肥售价 1.08 元/kg,硫酸钾售价 2.60 元/kg,硫酸钾复合肥售价 2.10 元/kg,土杂粪售价 0.02 元/kg。

4 讨论

a. 生物有机肥的组成成分,通过微生物活动为马铃薯提供所必需的氮、磷、钾等营养元素和微量元素。固氮菌可固定空气中的氮,被马铃薯吸收利用;溶磷菌,可把土壤中被固定的磷酸盐中的磷分解出来,变成可被马铃薯吸收利用的可溶性磷;解钾菌,可分解磷灰石等含钾化合物,释放出可被马铃薯吸收利用的可溶性钾;放线菌,它产生抗生素抑制有害微生物的生长,同时还产生多种植物生

长刺激素,刺激和促进马铃薯生长发育。因此,为 马铃薯丰产奠定了基础。

- b. 据试验示范结果表明, 生物有机肥可代替 3/4 左右的化肥用量, 可大大减少化肥用量。它不仅降低施肥成本, 而且增产效果明显, 还具有提高经济效益、改良活化土壤、培肥地力、防止土壤板结和污染生态环境等作用。
- c. 示范结果表明,处理与对照二者的淀粉含量相近,这可能与降雨有关。生物有机肥能否提高马铃薯的淀粉含量问题,有待进一步研究。