•研究简报•

含氯化肥在马铃薯上应用效果的研究

(青海大学农学系 西宁 810016)

中图分类号: S143, S532

文献标识码: B

文章编号: 1001-0092 (2000) 02-0079-02

1 前 言

长期以来受"忌氯作物"传统观点的影响,农 民群众不敢在马铃薯上使用含氯化肥。近来,笔者 曾研究了马铃薯因不同生育时期追施钾肥 (氯化 钾)的试验⁽¹⁾,并取得显著经济效益。在结论肯定 的基础上, 1997~1998 年我们专设了马铃薯施用含 氯化肥的试验, 旨在探索含氯化肥在马铃薯栽培上 的应用效果, 为今后生产大面积应用提供可靠依 据。

2 材料与方法

试验地设在青海省湟中县海子沟乡顾家岭村, 海拔 2560 m, 土壤为栗钙土。供试品种为高原 8 号, 前茬作物为油菜。每公顷底肥用当地腐熟圈肥 30000 kg (其内已掺入云南产重过磷酸钙 (即三料 磷肥, P₂O₅ 含量为 46%) 112.5 kg, 尿素 225 kg, 秋耕时将有机肥和化肥一同施入后翻地(顺犁沟溜 或撒于地面后翻耕),深度 15 cm,春耕时精耕细 作, 耙 (耱) 平地面。试验采用完全随机区组设 计,小区面积 30 m^2 ,重复3次。行距50 cm,株距 $8\sim10$ cm, 每 667 m² 栽 4500 株。用草木灰拌种。

试验共分3个处理:①无氯区,每公顷施硫酸 铵 150 kg, 硫酸钾 150 kg; ②低氯区, 每公顷施氯 化铵 125.25 kg, 硫化钾 150 kg; ③高氯区, 每公顷 施氯化铵 125.25 kg, 氯化钾 125.25 kg。各处理均 将化肥在秋耕时就施入土壤。来年春季在马铃薯的 幼苗期追施尿素每公顷 75 kg, 追施时采用每株面 施后浅盖土,其它栽培措施皆同大田生产。自出 苗期每小区随机选取 20 个单株进行标记观察记载 植株生长发育状况、氯害症状等。成熟时(全田 80%的植株茎叶枯黄)分别测定其块茎重,进行 薯块分级,最后按小区收获计产。

马铃薯块茎分级标准是: 薯块重 100 g 以下为 小; 100~200 g 为中, 200 g 以上为大。

3 结果分析

3.1 含氯化肥对马铃薯的植株生长发育及产量的 影响

3.1.1 对植株生长发育的影响

在马铃薯收获前对各处理植株形态进行测定, 施氯处理比无氯处理株高增加 4.5~5.4 cm, 茎粗 增加 0.03~0.04 cm, 单株分枝数增加 0.6~0.8 个。 顶叶颜色绿色变深,这可能是适量的氯元素促进了 马铃薯的生长,增强光合作用所致 (表 1)。据我 们对小区试验调查未见到马铃薯氯害症状。

表1 植株生长发育情况 (20 株平均值)

处 理	株高 (cm)	茎粗 (cm)	单株分枝数 (个)	顶叶颜色
高氮	44.7	0.57	5.4	深绿
低氮	45.6	0.56	5.2	绿
- 无氮	40.2	0.53	4.6	浅绿

3.1.2 对鲜薯产量的影响

各处理小区鲜薯产量见表 2。试验结果表明, 高氯处理每公顷产鲜薯 28510 kg, 低氯处理 27883 kg, 无氯处理 23663 kg, 高氯处理比无氯处理每公 顷增 4847 kg,增产率 20.48%,低氯处理比无氯处 理每公顷增 4220 kg,增产率 17.83%。经方差分析

收稿日期: 1999-01-17

达极显著水平。

3.2 马铃薯田间土壤含氯量的测定结果

氯离子不易被土壤保存,易随水淋失。马铃薯 施用含氯化肥后,是否会积累,我们对试验田土样 进行测定,结果表明,在不同土壤层次和不同取样 时期,处理间的含氯量基本没有什么大变化(见表3)。这可能由于该地区耕地休闲时间长达6~7个月,加上我们改变了传统的施肥方法,而采用秋季耕地时就将有机肥和化肥一同施入土壤中,这样会对氯离子产生足够的淋洗作用。

表	2 2	- 紺	薯	立	县	65	蚁	品
1 4	_ ^\	些十	者	Γ	里	чΊ	なり	띠미

小区产量 (kg)		二年平均	施氯比不施氯		差异显著性		
处 理 -	1997年	1998 年	$({\rm kg/hm}^2)$	增产量 (kg)	增产率 (%)	0.05	0.01
高氯	85.92	85.13	28510	4847	20.48	a	A
低氯	83.43	83.86	27883	4220	17.83	a	A
无氯 (CK)	70.89	71.08	23663			b	В

表 3 马铃薯田间土样含氯测定

生育期 ——		0~20 _{cm}			20~40 _{cm}	
	无氯	低氯	高氯	———— 无氯	低氯	高氯
苗期	0.002	0.004	0.005	0.003	0.004	0.006
现蕾期	0.002	0.003	0.004	0.003	0.004	0.004
开花期	0.002	0.003	0.004	0.002	0.003	0.004
收获期	0.002	0.002	0.004	0.002	0.003	0.003

3.3 马铃薯施用含氯化肥后对薯块大小及品质的 影响

2年试验对薯块分级的调查结果表明:高氯处理平均大薯占38.8%,中薯占54.3%,小薯占6.9%;低氯处理平均大薯占37.6%,中薯占52.7%,小薯占9.7%;无氯处理平均大薯占36.4%,中薯占47.2%,小薯占16.4%。这说明施氯处理可增加大、中薯,减少小薯。对马铃薯样品的水分和淀粉含量分析结果表明,鲜薯水分含量:高氯处理72.4%,低氯处理73.6%,无氯处理72.3%。干薯淀粉含量:高氯处理63.9%,低氯处理72.3%。干薯淀粉含量:高氯处理63.9%,低氯处理63.7%,无氯处理63.7%。经处理间多次重复比较,均未达到显著水平。这说明施氯处理对马铃薯含水量和淀粉含量两项品质指标并无影响。另外我们对试验后的各处理马铃薯蒸熟后进行品尝,食味一致。

4 小 结

从我省浅山地区的试验说明,马铃薯可以施用含氯 化肥,将有机肥同含氯化肥在秋耕时就施入土壤 中,足以排除所施含氯化肥中氯对马铃薯的不良影 响,根据我们对各处理小区的田间观察调查,没有 发现氯害症状。

- b. 秋季耕地时将有机肥和化肥一同施入土壤中,不仅对含氯化肥中的氯离子产生了足够的淋洗作用,而且有利于肥料腐熟矿化,提高肥料利用率,减少肥料的挥发损失,从而满足马铃薯整个生长发育时期所需要的养分。
- c. 马铃薯是我省主要种植的粮菜兼用型作物, 为了提高产量和充分利用我省充足的氯化钾资源, 突破马铃薯是"忌氯作物"的禁区,为马铃薯施用 含氯化肥,提供科学依据,我们进行此项研究。

参考文献

- [1] 马辉等. 青海浅山地区马铃薯在不同生育时期追施钾肥的增产效果. 马铃薯杂志, 1998, 12 (2), 90~91
- [2] 胡秉民,张全德、农业试验统计分析方法、浙江科学技术出版

(C)19氟元素也是存在物心后的点着元素之前 Publishin House All rights reserved. http://www.cnki.net